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G6del's theorem may be demonstrated using arguments having an information- 
theoretic flavor. In such an approach it is possible to argue that if a theorem 
contains more information than a given set of axioms, then it is impossible for 
the theorem to be derived from the axioms. In contrast with the traditional proof 
based on the paradox of the liar, this new viewpoint suggests that the incomplete- 
ness phenomenon discovered by G&:lel is natural and widespread rather than 
pathological and unusual. 

1. INTRODUCTION 

To set the stage, let us listen to Hermann Weyl (1946), as quoted by 
Eric Temple Bell (1951): 

We are less certain than ever about the ultimate foundations 
of (logic and) mathematics. Like everybody and everything in 
the world today, we have our "crisis." We have had it for nearly 
fifty years. Outwardly it does not seem to hamper our daily 
work, and yet I for one confess that it has had a considerable 
practical influence on my mathematical life: it directed my 
interests to fields I considered relatively "safe," and has been a 
constant drain on the enthusiasm and determination with which 
I pursued my research work. This experience is probably shared 
by other mathematicians who are not indifferent to what their 
scientific endeavors mean in the context of man's whole caring 
and knowing, suffering and creative existence in the world. 

And these are the words of John yon Neumann (1963): 

...there have been within the experience of people now 
living at least three serious crises... There have been two such 
crises in physics--namely, the conceptual soul-searching con- 
nected with the discovery of relativity and the conceptual diffi- 
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culties connected with discoveries in quantum theory. . .  The 
third crisis was in mathematics. It was a very serious conceptual 
crisis, dealing with rigor and the proper way to carry out a 
correct mathematical proof. In view of earlier notions of the 
absolute rigor of mathematics, it is surprising that such a thing 
could have happened, and even more surprising that it could 
have happened in these latter days when miracles are not sup- 
posed to take place. Yet it did happen. 

At the time of its discovery, Kurt G6del's incompleteness theorem was 
a great shock and caused much uncertainty and depression among mathe- 
maticians sensitive to foundational issues, since it seemed to pull the rug out 
from under mathematical certainty, objectivity, and rigor. Also, its proof 
was considered to be extremely difficult and recondite. With the passage of 
time the situation has been reversed. A great many different proofs of 
G6del's theorem are now known, and the result is now considered easy to 
prove and almost obvious: It is equivalent to the unsolvabitity of the halting 
problem, or alternatively to the assertion that there is an r.e. (recursively 
enumerable) set that is not recursive. And it has had no lasting impact on 
the daily lives of mathematicians or on their working habits; no one loses 
sleep over it any more. 

G6del's original proof constructed a paradoxical assertion that is true 
but not provable within the usual formalizations of number theory. In 
contrast I would like to measure the power of a set of axioms and rules of 
inference. I would like to be able to say that if one has ten pounds of axioms 
and a twenty-pound theorem, then that theorem cannot be derived from 
those axioms. And I will argue that this approach to GOdel's theorem does 
suggest a change in the daily habits of mathematicians, and that G6del's 
theorem cannot be shrugged away. 

To be more specific, I will apply the viewpoint of thermodynamics and 
statistical mechanics to G6del's theorem, and will use such concepts as 
probability, randomness, entropy, and information to study the incomplete- 
ness phenomenon and to attempt to evaluate how widespread it is. On the 
basis of this analysis, I will suggest that mathematics is perhaps more akin 
to physics than mathematicians have been willing to admit, and that 
perhaps a more flexible attitude with respect to adopting new axioms and 
methods of reasoning is the proper response to G6del's theorem. Probabilis- 
tic proofs of primality via sampling (Chaitin and Schwartz, 1978) also 
suggest that the sources of mathematical truth are wider than usually 
thought. Perhaps number theory should be pursued more openly in the 
spirit of experimental science (Polya, 1959)! 

I am indebted to John McCarthy and especially to Jacob Schwartz for 
making me realize that GOdel's theorem is not an obstacle to a practical AI 
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(artificial intelligence) system based on formal logic. Such an AI would take 
the form of an intelligent proof checker. Gottfried Wilhelm Liebnitz and 
David Hilbert's dream that disputes could be settled with the words 
"Gentlemen, let us compute!" and that mathematics could be formalized, 
should still be a topic for active research. Even though mathematicians and 
logicians have erroneously dropped this train of thought dissuaded by 
GOdel's theorem, great advances have in fact been made "covertly," under 
the banner of computer science, LISP, and AI (Cole et al., 1981; Dewar 
et al., 1981; Levin, 1974; Wilf, 1982). 

To speak in metaphors from Douglas Hofstadter (1979), we shall now 
stroll through an art gallery of proofs of G6del's theorem, to the tune of 
Moussorgsky's pictures at an exhibition! Let us start with some traditional 
proofs (Davis, 1978; Hofstadter, 1979; Levin, 1974; Post, 1965). 

2. TRADITIONAL PROOFS OF GODEL'S THEOREM 

G6del's original proof of the incompleteness theorem is based on the 
paradox of the liar: "This statement is false." He obtains a theorem instead 
of a paradox by changing this to: "This statement is unprovable." If this 
assertion is unprovable, then it is true, and the formalization of number 
theory in question is incomplete. If this assertion is provable, then it is false, 
and the formalization of number theory is inconsistent. The original proof 
was quite intricate, much like a long program in machine language. The 
famous technique of GiSdel numbering statements was but one of the many 
ingenious ideas brought to bear by G6del to construct a number-theoretic 
assertion which says of itself that it is unprovable. 

G6del's original proof applies to a particular formalization of number 
theory, and was to be followed by a paper showing that the same methods 
applied to a much broader class of formal axiomatic systems. The modern 
approach in fact applies to all formal axiomatic systems, a concept which 
could not even be defined when G6del wrote his original paper, owing to 
the lack of mathematical definition of effective procedure or computer 
algorithm. After Alan Turing succeeded in defining effective procedure by 
inventing a simple idealized computer now called the Turing machine (also 
done independently by Emil Post), it became possible to proceed in a more 
general fashion. 

Hilbert's key requirement for a formal mathematical system was that 
there be an objective criterion for deciding if a proof written in the language 
of the system is valid or not. In other words, there must be an algorithm, a 
computer program, a Turing machine, for checking proofs. And the com- 
pact modem definition of formal axiomatic system as a recursively enumer- 
able set of assertions is an immediate consequence if one uses the so-called 
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British Museum algorithm. One applies the proof checker in turn to all 
possible proofs, and prints all the theorems, which of course would actually 
take astronomical amounts of time. By the way, in practice LISP is a very 
convenient programming language in which to write a simple proof checker 
(Levin, 1974). 

Turing showed that the halting problem is unsolvable, that is, that there 
is no effective procedure or algorithm for deciding whether or not a 
program ever halts. Armed with the general definition of a formal axiomatic 
system as an r.e. set of assertions in a formal language, one can immediately 
deduce a version of G/Sdel's incompleteness theorem from Turing's theorem. 
I will sketch three different proofs of the unsolvability of the halting 
problem in a moment; first let me derive G~Sdel's theorem from it. The 
reasoning is simply that if it were always possible to prove whether or not 
particular programs halt, since the set of theorems is r.e., one could use this 
to solve the halting problem for any particular program by enumerating all 
theorems until the matter is settled. But this contradicts the unsolvability of 
the halting problem. 

Here come three proofs that the halting problem is unsolvable. One 
proof considers that function F(N) defined to be either one more than the 
value of the Nth  computable function applied to the natural number N, or 
zero if this value is undefined because the Nth  computer program does not 
halt on input N. F cannot be a computable function, for if program N 
calculated it, then one would have F(N)= F(N)+ 1, which is impossible. 
But the only way that F can fail to be computable is because one cannot 
decide if the Nth  program ever halts when given input N. 

The proof I have just given is of course a variant of the diagonal 
method which Georg Cantor used to show that the real numbers are more 
numerous than the natural numbers (Courant and Robbins, 1941). Some- 
thing much closer to Cantor's original technique can also be used to prove 
Turing's theorem. The argument runs along the lines of Bertrand Russell's 
paradox (Russell, 1967) of the set of all things that are not members of 
themselves. Consider programs for enumerating sets of natural numbers, 
and number these computer programs. Define a set of natural numbers 
consisting of the numbers of all programs which do not include their own 
number in their output set. This set of natural numbers cannot be recur- 
sively enumerable, for if it were listed by computer program N, one arrives 
at Russell's paradox of the barber in a small town who shaves all those and 
only those who do not shave themselves, and can neither shave himself nor 
avoid doing so. But the only way that this set can fail to be recursively 
enumerable is if it is impossible to decide whether or not a program ever 
outputs a specific natural number, and this is a variant of the halting 
problem. 
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For yet another proof of the unsolvability of the halting problem, 
consider programs which take no input and which either produce a single 
natural number as output or loop forever without ever producing an output. 
Think of these programs as being written in binary notation, instead of as 
natural numbers as before. I now define a so-called Busy Beaver function: 
BB of N is the largest natural number output by any program less than N 
bits in size. The original Busy Beaver function measured program size in 
terms of the number of states in a Turing machine instead of using the more 
correct information-theoretic measure, bits. It is easy to see that BB of N 
grows more quickly than any computable function, and is therefore not 
computable, which as before implies that the halting problem is unsolvable. 

In a beautiful and easy to understand paper Post (1965) gave versions 
of G6del's theorem based on his concepts of simple and creative r.e. sets. 
And he formulated the modem abstract form of G6del's theorem, which is 
like a Japanese haiku: there is an r.e. set of natural numbers that is not 
recursive. This set has the property that there are programs for printing all 
the members of the set in some order, but not in ascending order. One can 
eventually realize that a natural number is a member of the set, but there is 
no algorithm for deciding if a given number is in the set or not. The set is 
r.e. but its complement is not. In fact, the set of (numbers of) halting 
programs is such a set. Now consider a particular formal axiomatic system 
in which one can talk about natural numbers and computer programs and 
such, and let X be any r.e. set whose complement is not r.e. It follows 
immediately that not all true assertions of the form " the  natural number N 
is not in the set X "  are theorems in the formal axiomatic system. In fact, if 
X is what Post called a simple r.e. set, then only finitely many of these 
assertions can be theorems. 

These traditional proofs of G6del's incompleteness theorem show that 
formal axiomatic systems are incomplete, but they do not suggest ways to 
measure the power of formal axiomatic systems, to rank their degree of 
completeness or incompleteness. Actually, Post's concept of a simple set 
contains the germ of the information-theoretic versions of G6del's theorem 
that I will give later, but this is only visible in retrospect. One could 
somehow choose a particular simple r.e. set X and rank formal axiomatic 
systems according to how many different theorems of the form "N  is not in 
X "  are provable. Here are three other quantitative versions of GOdel's 
incompleteness theorem which do sort of fall within the scope of traditional 
methods. 

Consider a particular formal axiomatic system in which it is possible to 
talk about total recursive functions (computable functions which have a 
natural number as value for each natural number input) and their running 
time computational complexity. It is possible to construct a total recursive 
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function which grows more quickly than any function which is provably 
total recursive in the formal axiomatic system. It is also possible to con- 
struct a total recursive function which takes longer to compute than any 
provably total recursive function. That is to say, a computer program which 
produces a natural number output and then halts whenever it is given a 
natural number input, but this cannot be proved in the formal axiomatic 
system, because the program takes too long to produce its output. 

It is also fun to use constructive transfinite ordinal numbers (Hofs- 
tadter 1979) to measure the power of formal axiomatic systems. A construc- 
tive ordinal is one which can be obtained as the limit from below of a 
computable sequence of smaller constructive ordinals. One measures the 
power of a formal axiomatic system by the first constructive ordinal which 
cannot be proved to be a constructive ordinal within the system. This is like 
the paradox of the first unmentionable or indefinable ordinal number 
(Russell, 1967)! 

Before turning to information-theoretic incompleteness theorems, I 
must first explain the basic concepts of algorithmic information theory 
(Chaitin, 1975b, 1977, 1982). 

3. ALGORITHMIC INFORMATION THEORY 

Algorithmic information theory focuses on individual objects rather 
than on the ensembles and probability distributions considered in Claude 
Shannon and Norbert Wiener's information theory. How many bits does it 
take to describe how to compute an individual object? In other words, what 
is the size in bits of the smallest program for calculating it? It is easy to see 
that since general-purpose computers (universal Turing machines) can 
simulate each other, the choice of computer as yardstick is not very 
important and really only corresponds to the choice of origin in a coordi- 
nate system. 

The fundamental concepts of this new information theory are: algorith- 
mic information content, joint information, relative information, mutual 
information, algorithmic randomness, and algorithmic independence. These 
are defined roughly as follows. 

The algorithmic information content I(X) of an individual object X is 
defined to be the size of the smallest program to calculate X. Programs must 
be self-delimiting so that subroutines can be combined by concatenating 
them. The joint information I( X, Y) of two objects X and Y is defined to be 
the size of the smallest program to calculate X and Y simultaneously. The 
relative or conditional information content I(XIY) of X given Y is defined 
to be the size of the smallest program to calculate X from a minimal 
program for Y. 
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Note that the relative information content of an object is never greater 
than its absolute information content, for being given additional informa- 
tion can only help. Also, since subroutines can be concatenated, it follows 
that joint information is subadditive. That is to say, the joint information 
content is bounded from above by the sum of the individual information 
contents of the objects in question. The extent to which the joint informa- 
tion is less than this sum leads to the next fundamental concept, mutual 
information. 

The mutual information content I (X:  Y) measures the commonality of 
X and Y: it is defined as the extent to which knowing X helps one to 
calculate Y, which is essentially the same as the extent to which knowing Y 
helps one to calculate X, which is also the same as the extent to which it is 
cheaper to calculate them together than separately. That is to say, I (X:  Y) 
= I ( X ) -  I (X[Y)  = I ( r ) -  I (Y[X)  = I ( X ) +  I ( Y ) -  I (X,  r) .  Note that this 
implies that I( X, Y)  = I( X)+ I ( r I x  ) = I ( r ) +  I( XLY ). 

I can now define two very fundamental and philosophically significant 
notions: algorithmic randomness and algorithmic independence. These con- 
cepts are, I believe, quite close to the intuitive notions that go by the same 
name, namely, that an object is chaotic, typical, unnoteworthy, without 
structure, pattern, or distinguishing features, and is irreducible information, 
and that two objects have nothing in common and are unrelated. 

Consider, for example, the set of all N-bit long bit strings. Most such 
strings S have I (S )  approximately equal to N plus I (N) ,  which is N plus the 
algorithmic information contained in the base-two numeral for N, which is 
equal to N plus order of log N. No N-bit long S has information content 
greater than this. A few have less information content; these are strings with 
a regular structure or pattern. Those strings S of a given size having greatest 
information content are said to be random or patternless or algorithmically 
incompressible. The cutoff between random and nonrandom is somewhere 
around I (S )  equal to N if the string S is N bits long. 

Similarly, an infinite binary sequence such as the base-two expansion 
of pi is random if and only if all its initial segments are random, that is, if 
and only if there is a constant C such that no initial segment has informa- 
tion content less than C bits below its length. Of course, pi is the extreme 
opposite of a random string: it takes only I ( N )  which is order of log N bits 
to calculate pi's first N bits. But the probability that an infinite sequence 
obtained by independent tosses of a fair coin is algorithmically random is 
unity. 

Two strings are algorithmically independent if their mutual informa- 
tion is essentially zero, more precisely, if their mutual information is as 
small as possible. Consider, for example, two arbitrary strings X and Y each 
N bits in size. Usually, X and Y will be random to each other, excepting the 
fact that they have tile same length, so that I (X:  Y) is approximately equal 
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to I(N). In other words, knowing one of them is no help in calculating the 
other, excepting that it tells one the other string's size. 

To illustrate these ideas, let me give an information-theoretic proof that 
there are infinitely many prime numbers (Chaitin, 1979). Suppose on the 
contrary that there are only finitely many primes, in fact, K of them. 
Consider an algorithmically random natural number N. On the one hand, 
we know that I(N) is equal to log2N + order of loglog N, since the base-two 
numeral for N is an algorithmically random (log2N)-bit string. On the other 
hand, N can be calculated from the exponents in its prime factorization, and 
vice versa. Thus I(N) is equal to the joint information of the K exponents in 
its prime factorization. By subadditivity, this joint information is bounded 
from above by the sum of the information contents of the K individual 
exponents. Each exponent is of order log N. The information content of 
each exponent is thus of order loglogN. Hence I(N) is simultaneously 
equal to log2N+O(loglogN ) and less than or equal to KO(loglogN), 
which is impossible. 

The concepts of algorithmic information theory are made to order for 
obtaining quantitative incompleteness theorems, and I will now give a 
number of information-theoretic proofs of Grdel 's  theorem (Chaitin, 1974a, 
1974b, 1975a, 1977, 1982; Chaitin and Schwartz, 1978; Gardner, 1979). 

4. INFORMATION-THEORETIC P R O O F S  OF GODEL'S  
T H E O R E M  

I propose that we consider a formal axiomatic system to be a computer 
program for listing the set of theorems, and measure its size in bits. In other 
words, the measure of the size of a formal axiomatic system that I will use is 
quite crude. It is merely the amount of space it takes to specify a proof- 
checking algorithm and how to apply it to all possible proofs, which is 
roughly the amount of space it takes to be very precise about the alphabet, 
vocabulary, grammar, axioms, and rules of inference. This is roughly 
proportional to the number of pages it takes to present the formal axiomatic 
system in a textbook. 

Here is the first information-theoretic incompleteness theorem. Con- 
sider an N-bit formal axiomatic system. There is a program of size N which 
does not halt, but one cannot prove this within the formal axiomatic system. 
On the other hand, N bits of axioms can permit one to deduce precisely 
which programs of size less than N halt and which ones do not. Here are 
two different N-bit axioms which do this. If God tells one how many 
different programs of size less than N halt, this can be expressed as an N-bit 
base-two numeral, and from it one could eventually deduce which of these 
programs halt and which do not. An alternative divine revelation would be 
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knowing that program of size less than N which takes longest to halt. (In the 
current context, programs have all input contained within them.) 

Another way to thwart an N-bit formal axiomatic system is to merely 
toss an unbiased coin slightly more than N times. It is almost certain that 
the resulting binary string will be algorithmically random, but it is not 
possible to prove this within the formal axiomatic system. If one believes the 
postulate of quantum mechanics that God plays dice with the universe 
(Albert Einstein did not), then physics provides a means to expose the 
limitations of formal axiomatic systems. In fact, within an N-bit formal 
axiomatic system it is not even possible to prove that a particular object has 
algorithmic information content greater than N, even though almost all (all 
but finitely many) objects have this property. 

The proof of this closely resembles G. G. Berry's paradox of " the  first 
natural number which cannot be named in less than a billion words," 
published by Russell at the turn of the century (Russell, 1967). The version 
of Berry's paradox that will do the trick is " tha t  object having the shortest 
proof that its algorithmic information content is greater than a billion bits." 
More precisely, " tha t  object having the shortest proof within the following 
formal axiomatic system that its algorithmic information content is greater 
than the information content of the formal axiomatic system: . . . .  " where the 
dots are to be filled in with a complete description of the formal axiomatic 
system in question. 

By the way, the fact that in a given formal axiomatic system one can 
only prove that finitely many specific strings are random, is closely related 
to Post's notion of a simple r.e. set. Indeed, the set of nonrandom or 
compressible strings is a simple r.e. set. So Berry and Post had the germ of 
my incompleteness theorem! 

In order to proceed, I must define a fascinating algorithmically random 
real number between zero and one, which I like to call omega (Chaitin, 
1975b; Gardner, 1979). Omega is a suitable subject for worship by mystical 
cultists, for as Charles Bennett (Gardner, 1979) has argued persuasively, in a 
sense omega contains all constructive mathematical truth, and expresses it 
as concisely and compactly as possible. Knowing the numerical value of 
omega with N bits of precision, that is to say, knowing the first N bits of 
omega's base-two expansion, is another N-bit axiom that permits one to 
deduce precisely which programs of size less than N halt and which ones do 
not. 

Omega is defined as the halting probability of whichever standard 
general-purpose computer has been chosen, if each bit of its program is 
produced by an independent toss of a fair coin. To Turing's theorem in 
recursive function theory that the halting problem is unsolvable, there 
corresponds in algorithmic information theory the theorem that the base-two 
expansion of omega is algorithmically random. Therefore it takes N bits of 
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axioms to be able to prove what the first N bits of omega are, and these bits 
seem completely accidental like the products of a random physical process. 
One can therefore measure the power of a formal axiomatic system by how 
much of the numerical value of omega it is possible to deduce from its 
axioms. This is sort of like measuring the power of a formal axiomatic 
system in terms of the size in bits of the shortest program whose halting 
problem is undecidable within the formal axiomatic system. 

It is possible to dress this incompleteness theorem involving omega so 
that no direct mention is made of halting probabilities, in fact, in rather 
straightforward number-theoretic terms making no mention of computer 
programs at all. Omega can be represented as the limit of a monotone 
increasing computable sequence of rational numbers. Its Nth bit is therefore 
the limit as T tends to infinity of a computable function of N and T. Thus 
the Nth bit of omega can be expressed in the form Exists X Forall Y 
(computable predicate of X, Y, and N). Complete chaos is only two 
quantifiers away from computability! Omega can also be expressed via a 
polynomial P in, say, one hundred variables, with integer coefficients and 
exponents (Davis et al., 1976): the Nth bit of omega is a 1 if and only if 
there are infinitely many natural numbers K such that the equation 
P ( N ,  K ,  X l . . . . .  X98 ) = 0 has a solution in natural numbers. 

Of course, omega has the very serious problem that it takes much too 
long to deduce theorems from it, and this is also the case with the other two 
axioms we considered. So the ideal, perfect mathematical axiom is in fact 
useless! One does not really want the most compact axiom for deducing a 
given set of assertions. Just as there is a trade-off between program size and 
running time, there is a trade-off between the number of bits of axioms one 
assumes and the size of proofs. Of course, random or irreducible truths 
cannot be compressed into axioms shorter than themselves. If, however, a 
set of assertions is not algorithmically independent, then it takes fewer bits 
of axioms to deduce them all than the sum of the number of bits of axioms 
it takes to deduce them separately, and this is desirable as long as the proofs 
do not get too long. This suggests a pragmatic attitude toward mathematical 
truth, somewhat more like that of physicists. 

Ours has indeed been a long stroll through a gallery of incompleteness 
theorems. What is the conclusion or moral? It is time to make a final 
statement about the meaning of GOdel's theorem. 

5. T H E  MEANING OF GODEL'S  T H E O R E M  

Information theory suggests that the GSdel phenomenon is natural and 
widespread, not pathological and unusual. Strangely enough, it does this via 
counting arguments, and without exhibiting individual assertions which are 
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true but unprovable! Of course, it would help to have more proofs that 
particular interesting and natural true assertions are not demonstrable 
within fashionable formal axiomatic systems. 

The real question is this: Is GOdel's theorem a mandate for revolution, 
anarchy, and license?! Can one give up after trying for two months to prove 
a theorem, and add it as a new axiom? This sounds ridiculous, but it is sort 
of what number theorists have done with Bernhard Riemann's zeta conjec- 
ture (Polya, 1959). Of course, two months is not enough. New axioms 
should be chosen with care, because of their usefulness and large amounts 
of evidence suggesting that they are correct, in the same careful manner, say, 
in practice in the physics community. 

G6del himself has espoused this view with remarkable vigor and clarity, 
in his discussion of whether Cantor's continuum hypothesis should be 
added to set theory as a new axiom (G6del, 1964): 

�9 �9 disregarding the intrinsic necessity of some new 
axiom, and even in case it has no intrinsic necessity at all, a 
probable decision about its truth is possible also in another way, 
namely, inductively by studying its "success." Success here means 
fruitfulness in consequences, in particular in "verifiable" conse- 
quences, i.e., consequences demonstrable without the new axiom, 
whose proofs with the help of the new axiom, however, are 
considerably simpler and easier to discover, and make it possible 
to contract into one proof many different proofs. The axioms for 
the system of real numbers, rejected by intuitionists, have in this 
sense been verified to some extent, owing to the fact that 
analytical number theory frequently allows one to prove num- 
ber-theoretical theorems which, in a more cumbersome way, can 
subsequently be verified by elementary methods. A much higher 
degree of verification than that, however, is conceivable. There 
might exist axioms so abundant in their verifiable consequences, 
shedding so much light upon a whole field, and yielding such 
powerful methods for solving problems (and even solving them 
constructively, as far as that is possible) that, no matter whether 
or not they are intrinsically necessary, they would have to be 
accepted at least in the same sense as any well-established 
physical theory. 

Later in the same discussion GOdel refers to these ideas again: 

It was pointed out earlier. . . that,  besides mathematical in- 
tuition, there exists another (though only probable) criterion of 
the truth of mathematical axioms, namely their fruitfulness in 
mathematics and, one may add, possibly also in physics. . .The 
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simplest case of an application of the criterion under discussion 
arises when some.., axiom has number-theoretical consequences 
verifiable by computation up to any given integer. 

Grdel also expresses himself in no uncertain terms in a discussion of 
Russell's mathematical logic (G6del, 1964): 

The analogy between mathematics and a natural science is 
enlarged upon by Russell also in another respect.., axioms need 
not be evident in themselves, but rather their justification lies 
(exactly as in physics) in the fact that they make it possible for 
these "sense perceptions" to be deduced... I think that.. ,  this 
view has been largely justified by subsequent developments, and 
it is to be expected that it will be still more so in the future. It 
has turned out that solution of certain arithmetical problems 
requires the use of assumptions essentially transcending arith- 
metic... Furthermore it seems likely that for deciding certain 
questions of abstract set theory and even for certain related 
questions of the theory of real numbers new axioms based on 
some hitherto unknown idea will be necessary. Perhaps also the 
apparently unsurmountable difficulties which some other 
mathematical problems have been presenting for many years are 
due to the fact that the necessary axioms have not yet been 
found. Of course, under these circumstances mathematics may 
lose a good deal of its "absolute certainty;" but, under the 
influence of the modern criticism of the foundations, this has 
already happened to a large extent... 

I end as I began, with a quotation from Weyl (1949): "A truly realistic 
mathematics should be conceived, in line with physics, as a branch of the 
theoretical construction of the one real world, and should adopt the same 
sober and cautious attitude toward hypothetic extensions of its foundations 
as is exhibited by physics." 

6. DIRECTIONS FOR FUTURE RESEARCH 

a. Prove that a famous mathematical conjecture is unsolvable in the 
usual formalizations of number theory. Problem: if Pierre Fermat's "last 
theorem" is undecidable then it is true, so this is hard to do. 

b. Formalize all of college mathematics in a practical way. One wants 
to produce textbooks that can be run through a practical formal proof 
checker and that are not too much larger than the usual ones. LISP (Levin, 
1974) and SETL (Dewar et al., 1981) might be good for this. 
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c. Is algorithmic information theory relevant to physics, in particular, 
to thermodynamics and statistical mechanics? Explore the thermodynamics 
of computation (Bennett, 1982) and determine the ultimate physical limita- 
tions of computers. 

d. Is there a physical phenomenon that computes something noncom- 
putable? Contrariwise, does Turing's thesis that anything computable can be 
computed by a Turing machine constrain the physical universe we are in? 

e. Develop measures of self-organization and formal proofs that life 
must evolve (Chaitin, 1979; Eigen and Winkler, 1981; von Neumann, 1966). 

f. Develop formal definitions of intelligence and measures of its various 
components; apply information theory and complexity theory to AI. 
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